Mohamed R. Shaaban ${ }^{\text {a,b }}$ and Ahmed H. M. Elwahy ${ }^{\text {a* }}$
${ }^{a}$ Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
${ }^{\mathrm{b}}$ Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
*E-mail: aelwahy @hotmail.com
Received November 6, 2010
DOI 10.1002/jhet. 861
View this article online at wileyonlinelibrary.com.

A synthesis of $\operatorname{bis}(\alpha$-bromo ketones) 5a-c and $\mathbf{6 b}, \mathbf{c}$ was accomplished by the reaction of bis(acetophenones) $\mathbf{3 a - c}$ and $\mathbf{4 b}, \mathbf{c}$ with N-bromosuccinimide in the presence of p-toluenesulfonic acid $(p-\mathrm{TsOH})$. Treatment of $\mathbf{5 a - c}$ and $\mathbf{6 b , c}$ with each of 4-amino-3-mercapto-1,2,4-triazoles $\mathbf{9 a}, \mathbf{b}$ and 4-amino-6-phenyl-3-mercapto-1,2,4-triazin-5 $(4 H)$-ones 13 in refluxing ethanol afforded the novel bis(s-triazolo[3,4- b] $[1,3,4]$ thiadiazines) 10a-d and 11a-c as well as bis(as-triazino[3,4-b][1,3,4]thiadiazines) 14a-c and 15, respectively, in good yields. Compounds $11 b$ and 11c underwent NaBH_{4} reduction in methanol to give the target $1, \omega$-bis $\{4$-(6,7-dihydro-3-substituted- $5 \mathrm{H}-1,2,4$-triazolo[3,4-b][1,3,4]thiadiazin-6-yl) phenoxy $\}$ butanes $\mathbf{1 2 a}$ and $\mathbf{1 2 b}$ in 42 and 46% yields, respectively.
J. Heterocyclic Chem., 49, 640 (2012).

INTRODUCTION

Bis-heterocyclic compounds with a suitable alkyl spacer constitute an important class of compounds and their various types of activities, especially, as antitumor [1] and as antimicrobial [2], have been studied. These activities, that result in their pharmacological utility, have been reported to be enhanced when different functionalities or substitutions are present on the two heterocyclic moieties in the bis-compound [3-11].

In recent decades, the synthesis and pharmacological activities of 1,2,4-triazoles and their heterocyclic fused analogues (e.g., triazolothiadiazoles and triazolothiadiazines) have attracted much attention because they display a variety of medical applications such as antibacterial, antifungal, anticancer, antitumor, anticonvulsant, antiinflammatory, antimicrobial activity and analgesic properties [12-26].

In addition, 1,2,4-triazines and their fused derivatives have been widely studied in terms of their synthetic xmethodologies and reactivity since some of these derivatives were reported to have promising biological activities [27-35].
α-Bromo ketones are valuable compounds, which are useful in the synthesis of a variety of heterocycles [36-40] as well as in other synthetic applications including cross aldol condensations [41], enaminoketones [42] and Favorskii rearrangements [43,44]

In general, α-bromo carbonyl compounds can be conventionally obtained by the reaction of carbonyl compounds with various reagents such as bromine [45], copper (II) bromide [46,47], dioxane dibromide [48] tetrabutylammonium tribromide [49], and polymer-supported pyridinium bromide perbromide [50]. In addition, the N -bromosuccinimide (NBS) has been classically utilized for the α-bromination of ketones via radical process promoted by radical initiators such as AIBN and benzoyl peroxide in CCl_{4} [51].

Keeping the above facts in mind and in continuation of our interest in the synthesis of bis(heterocycles) [52-59], we describe herein a simple and efficient route for the synthesis of novel bis(α-bromo ketones) and studied their synthetic utilities as key intermediates for the synthesis of novel bis(s-triazolo[3,4-b][1,3,4]thiadiazines) as well as bis(as-triazino[3,4-b][1,3,4]thiadiazines).

RESULTS AND DISCUSSION

In search of an expedient pathway to prepare the target bis(α-bromo ketones) 5a-c and $\mathbf{6 b}, \mathbf{c}$ our attention focused on bis(acetophenones) 3a-c and 4a-c as precursors which could be obtained by the reaction of the potassium salt 2-hydroxyacetophenone 1a and 4-hydroxyacetophenones 1b with the appropriate dibromoalkanes 2a-c in boiling DMF (Scheme 1).

Scheme 1

First attempts to synthesize $5 \mathbf{a}$ and $\mathbf{6 b}$ by bromination of $\mathbf{3 a}$ and $\mathbf{4 b}$ with Br_{2} in acetic acid led to the formation of a mixture of the $\operatorname{bis}(\alpha$-bromo ketones) $5 \mathbf{a}$ and $\mathbf{6 b}$ as well as the undesirable $\operatorname{bis}(\alpha, \alpha$-dibromoketones) $7 \mathbf{a}$ and 8b (Scheme 2). The ${ }^{1} \mathrm{H}$ NMR spectra of the reaction products indicated the presence of $\mathrm{CH}_{2}-\mathrm{Br}$ protons, resonated at $\delta 4.39-4.49 \mathrm{ppm}$ as singlet signals integrating four protons, and CHBr_{2} protons, resonated at $\delta 6.66-6.96 \mathrm{ppm}$ as singlet signals integrating two protons. Unfortunately, all attempts to separate the two products were unsuccessful.

On the other hand, the reaction of $\mathbf{3 a}-\mathbf{c}$ and $\mathbf{4 b}, \mathbf{c}$ with NBS in the presence of p-toluenesulfonic acid ($p-\mathrm{TsOH}$) in acetonitrile afforded the corresponding $\operatorname{bis}(\alpha$-bromo ketones) 5a-c and $\mathbf{6 b , c}$ as single monobrominated ketones in most instances in high yield (Scheme 3).

The synthetic utility of compounds 5a-c and $\mathbf{6 b}, \mathbf{c}$ as building blocks for novel bis(5,6-dihydro-s-triazolo[3,4-b] thiadiazines) 10a-d and 11a-c is outlined in Scheme 4. 4-Amino-3-mercapto-1,2,4-triazole derivatives $\mathbf{9 a}, \mathbf{b}$ were chosen as ideal heterocyclic reagents. The amino and mercapto groups of these compounds serve as readily accessible nucleophilic centers for the preparation of
N-bridged heterocycles. Thus, reaction of $\mathbf{5 a - c}$ and $\mathbf{6 b}$, \mathbf{c} with $\mathbf{9 a , b}$ in anhydrous ethanol under reflux afforded 10a-d and 11a-c in 58-95\% yields.

Compounds 11b and 11c underwent NaBH_{4} reduction in methanol to give the target $1, \omega$-bis $\{4$-(6,7-dihydro-3-substituted-5 $\mathrm{H}-1,2,4$-triazolo[3,4- b][1,3,4]thiadiazin-6-yl) phenoxy \}butanes 12a,b in 60-65\% yields (Scheme 5).

Similarly, a series of 1,2,4-triazino[3,4-b][1,3,4]thiadiazin-4-ones 14a-c and 15 have been synthesized in $63-72 \%$ yield by the reaction of 4-amino-6-phenyl-3-mercapto-1,2,4-triazin-5(4H)-ones 14a-c and $\mathbf{1 5}$ with the appropriate $\operatorname{bis}(\alpha$-bromo ketones) 5a-c and $\mathbf{6 c}$ in refluxing ethanol (Scheme 6).

All compounds were characterized by their melting points, elementary analysis, IR, ${ }^{1} \mathrm{H}$ NMR and mass spectra. The spectral data agree with the proposed structures. Thus, the disappearance of NH_{2} stretching bands in the IR spectra of triazolothiadiazines 10a-d and 11a-c as well as triazinothiadiazin-4-ones $\mathbf{1 4 a} \mathbf{- c}$ and $\mathbf{1 5}$, together with the disappearance of the characteristic peaks belonging to primary amine in their ${ }^{1} \mathrm{H}$ NMR spectra are evidences for the cyclocondensation of the appropriate $\operatorname{bis}(\alpha$-bromo ketones) with each of $\mathbf{9 a , b}$ and 13, respectively. In addition, the presence of SCH_{2} protons, resonated at $\delta 4.24-4.57 \mathrm{ppm}$ as singlet signals integrating four protons, clearly indicated that ring closure reaction occurred. All other protons were seen at the expected chemical shifts and integral values. Compounds 12a and 12b showed in their ${ }^{1} \mathrm{H}$-NMR spectra a well resolved doublet signal for $\mathrm{N}^{5}-\mathrm{H}$, two dd singlet for $\mathrm{C}^{7}-\mathrm{Ha}$ and $\mathrm{C}^{7}-\mathrm{He}$ and a multiplet signal for $\mathrm{C}^{6}-\mathrm{H}$. The two protons of $\mathrm{C}^{7}-\mathrm{H}_{2}$ (for compound 12a and 12b) each appears as dd as a result of the geminal coupling (${ }^{2} J=12.6 \mathrm{~Hz}$) as well as the vicinal coupling constants with $\mathrm{C}^{6}-\mathrm{H}$. The large vicinal coupling constants ${ }^{3} J_{5,6}=8.7-9.3 \mathrm{~Hz},{ }^{3} J_{6,7}=8.7 \mathrm{~Hz}$ indicate trans relationship of $\mathrm{N}^{5}-\mathrm{H}, \mathrm{C}^{6}-\mathrm{H}$ and $\mathrm{C}^{6}-\mathrm{H}, \mathrm{C}^{7}-\mathrm{Ha}$. On the other hand, the small vicinal coupling constant ${ }^{3} J_{6,7 \mathrm{e}}=2.7-3.0 \mathrm{~Hz}$ indicate the cis relationship of $\mathrm{C}^{6}-\mathrm{H}$, C^{7} - He .

In conclusion we synthesized new series of bis(α-bromo ketones) via the reaction of bis(acetophenones) with NBS in the presence of $p-\mathrm{TsOH}$ in acetonitrile. The synthetic utility of these compounds as building blocks for novel bis(5,6-dihydro-s-s-triazole[3,4-b]thiadiazines) as well as

Scheme 2

Scheme 3

bis(as-triazino[3,4-b][1,3,4] thiadiazines) have been investigated. The novel starting $\operatorname{bis}(\alpha$-bromo ketones) would open a new access to a variety of heterocyclic systems with possible pharmaceutical properties. The new synthesized bis (fused heterocycles) offer an advantage of their easy synthesis on a large scale in a simple procedure from inexpensive starting materials and we believe that they should be useful compounds with potentially high pharmacological and biological activities.

EXPERIMENTAL

Melting points were determined in open glass capillaries with a Gallenkamp apparatus and were not corrected. The infrared
spectra were recorded in potassium bromide disks on a Pye Unicam SP 3-300 and Shimadzu FTIR 8101 PC infrared spectrophotometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were determined on a Varian Mercury VX 300 NMR spectrometer using TMS as an internal standard and DMSO- d_{6} as a solvent. Mass spectra were measured on a GCMS-QP1000 EX spectrometer at 70 eV . 1, ω-bis(2-acetylphenoxy)alkanes 3a-c and 1, ω-bis(4-acetylphenoxy) alkanes $\mathbf{4 a}, \mathbf{b}$ were prepared according to published procedures [53,60].

Synthesis of 1, ω-bis(2-acetylphenoxy)alkanes 3a-c and 1, ω-bis(4-acetylphenoxy)alkanes 4a-c. 2-Hydroxyacetophenone 1a or 4-hydroxyacetophenone 1b (10 mmol) was dissolved in hot ethanolic KOH solution (prepared by dissolving $0.56 \mathrm{~g}(10 \mathrm{mmol})$ of KOH in 10 mL of absolute ethanol), and the solvent was then removed in vacuo. The remaining material was dissolved in DMF

$(10 \mathrm{~mL})$ and the appropriate dibromides (5 mmol) was added. The reaction mixture was refluxed for 10 min . during which KBr was separated. The solvent was then removed in vacuo and the remaining materials was poured onto crushed ice. The crude precipitates of bis(acetylphenoxy)alkanes 3a-c and 4a-c were recrystallized from ethanol [53,60].
Synthesis of bis($\boldsymbol{\alpha}$-bromo ketones) 5a-c and 6b,c. To a stirred solution of bis(acetophenone) derivatives $\mathbf{3 a - c}$ or $\mathbf{4 b}, \mathbf{c}$ (10 mmol) and $p-\mathrm{TsOH}(5.6 \mathrm{~g}, 20 \mathrm{mmol}$) in acetonitrile (50 mL) was slowly added NBS ($3.6 \mathrm{~g}, 20 \mathrm{mmol}$). After addition of NBS was complete, the reaction mixture was refluxed with stirring for $1-2 \mathrm{~h}$ then left to cool to room temperature. The solvent was evaporated in vacuo and the residue was dissolved in chloroform (50 mL), washed with water $(2 \times 20 \mathrm{~mL})$ and dried over MgSO_{4}. After evaporation of the solvent the resulting solid was recrystallized from benzene to afford the corresponding $\operatorname{bis}(\alpha$-bromo ketone) derivatives $\mathbf{5 a - c}$ and $\mathbf{6 b}, \mathbf{c}$, respectively.

1,2-bis(2-bromoacetylphenoxy)ethane 5a. Yield (68\%), mp $105^{\circ} \mathrm{C}$; IR: (potassium bromide) $1675(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 4.55(\mathrm{~s}, 4 \mathrm{H}), 4.74(\mathrm{~s}, 4 \mathrm{H}), 7.07(\mathrm{t}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.27(\mathrm{~d}, 2 \mathrm{H}$, $J=9 \mathrm{~Hz}), 7.59(\mathrm{t}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.70(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR: $\delta 25.14,29.47,89.42,113.49,121.14,123.43$, 129.9, 136.70, 187.87; ms: m/z (\%) $458\left(\mathrm{M}^{+}+4,1.3\right), 456$ $\left(\mathrm{M}^{+}+2,2.6\right), 454\left(\mathrm{M}^{+}, 1.35\right), 361(44), 241(45), 147(45)$, 121 (69), 92 (100). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}_{4}$: C, 47.40; H, 3.54. Found: C, 47.38; H, 3.56.

1,2-bis(2-bromoacetylphenoxy)propane 5b. Yield 83\%, mp $88-89^{\circ} \mathrm{C}$; IR: (potassium bromide) $1675(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.28-2.39(\mathrm{~m}, 2 \mathrm{H}), 4.3(\mathrm{t}, 4 \mathrm{H}), 4.78(\mathrm{~s}, 4 \mathrm{H}), 7.06(\mathrm{t}, 2 \mathrm{H}, J=9$
$\mathrm{Hz}), 7.22(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.58(\mathrm{t}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.69(\mathrm{~d}, 2 \mathrm{H}$, $J=9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 28.10,28.31,65.52,89.5,113.20$, 126.18, 128.98, 129.9, 133.51, 191.69; ms: $m / z(\%) 472\left(\mathrm{M}^{+}+4,0.43\right)$, $470\left(\mathrm{M}^{+}+2,0.82\right), 468\left(\mathrm{M}^{+}, 0.52\right), 377(25), 255(26), 175(70), 121$ (100). Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{O}_{4}$: C, 48.54; H, 3.86. Found: C, 48.57; H, 3.88.

1,2-bis(2-bromoacetylphenoxy)butane 5c. Yield 92\%, mp. $145^{\circ} \mathrm{C}$; IR: (potassium bromide) $1670(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.00-2.01(\mathrm{~m}, 4 \mathrm{H}), 4.18(\mathrm{brs}, 4 \mathrm{H}), 4.75(\mathrm{~s}, 4 \mathrm{H})$, $7.05(\mathrm{t}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.20(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.55(\mathrm{t}, 2 \mathrm{H}$, $J=9 \mathrm{~Hz}), 7.68(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}) ; \mathrm{ms}: m / z(\%) 486\left(\mathrm{M}^{+}+4\right.$, $0.01), 484\left(\mathrm{M}^{+}+2,0.05\right), 482\left(\mathrm{M}^{+}, 0.02\right), 325(0.74), 215$ (0.04), 137 (16), 121(59), 55 (100). Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{4}$: C, 49.61; H, 4.16. Found: C, 49.60; H, 4.18.

1,2-bis(4-bromoacetylphenoxy)propane 6b. Yield 85\%, $\mathrm{mp} .165^{\circ} \mathrm{C}$; IR: (potassium bromide) $1674(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 2.22$ (brs, 2H), 4.21 (brs, 4H), 4.71(s, 4H), 7.07 $(\mathrm{d}, 4 \mathrm{H}, J=9 \mathrm{~Hz}), 7.95(\mathrm{~d}, 4 \mathrm{H}, J=9 \mathrm{~Hz})$; ms: $m / z(\%) 472$ $\left(\mathrm{M}^{+}+4,1.04\right), 470\left(\mathrm{M}^{+}+2,1.4\right), 468\left(\mathrm{M}^{+}, 0.52\right), 430(0.7)$, 375 (12), 297 (30), 241 (9), 149 (35), 121 (100). Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{O}_{4}: \mathrm{C}, 48.54 ; \mathrm{H}, 3.86$. Found: C, 48.55; H, 3.85.

1,2-bis(2-bromoacetylphenoxy)butane 6c. Yield 95\%, mp. $158^{\circ} \mathrm{C}$; IR: (potassium bromide) $1671(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.01-2.09(\mathrm{~m}, 4 \mathrm{H}), 4.18($ brs, 4 H$), 4.71(\mathrm{~s}, 4 \mathrm{H})$, $7.06(\mathrm{~d}, 4 \mathrm{H}, J=9 \mathrm{~Hz}), 7.93(\mathrm{~d}, 4 \mathrm{H}, J=9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 25.53,30.95,67.57,114.32,114.48,126.63,129.9,189.67$; $\mathrm{ms}: \mathrm{m} / \mathrm{z}(\%) 486\left(\mathrm{M}^{+}+4,0.16\right), 484\left(\mathrm{M}^{+}+2,0.97\right), 482\left(\mathrm{M}^{+}, 0.87\right)$, 352 (18), 323 (32), 271 (26), 207 (100), 121 (47). Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}_{4}$: C, 49.61; H, 4.16. Found: C, 49.63; H, 4.17.

Synthesis of bis(triazolothiadiazines) 10a-d and 11a-c and bis (triazinothiadiazines) 14a-c and 15. General procedure. A mixture of the appropriate $\operatorname{bis}(\alpha$-bromoacetophenone) 5a-c or $\mathbf{6 b}, \mathbf{c}$ (5 mmol), and the corresponding aminotriazolthiol or aminotriazinethiol derivative $\mathbf{9 a}, \mathbf{b}$ or $\mathbf{1 3}(10 \mathrm{mmol})$ in absolute ethanol was heated at refluxing temperature for 2 h . The reaction mixture was then cooled and the resulting precipitate was collected by filtration, washed thoroughly with ethanol and dried. Recrystallization from dioxane/DMF afforded the corresponding bis(fused heterocycle) derivatives 10a-d, 11a-d, 14a-c, and 15 in $54-95 \%$ yield.
1,2-Bis\{2-(3-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine-6yl)phenoxyjethane 10a. Yield 78%, mp. $250^{\circ} \mathrm{C}$; IR: (potassium bromide) $1608(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 4.18(\mathrm{~s}, 4 \mathrm{H}), 4.53(\mathrm{~s}, 4 \mathrm{H})$, $7.06(\mathrm{t}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.28(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.48-7.59(\mathrm{~m}, 8 \mathrm{H})$, 7.94-7.98 (m, 6H); ms: m/z (\%) $642\left(\mathrm{M}^{+}, 5\right), 403$ (16.4), 309 (6.8), 217 (5.4), 177 (100), 76 (75.5). Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 63.53; H, 4.08; N, 17.43. Found: C, 63.50; H, 4.11; N, 17.48.

1,2-Bis\{2-(3-methyl-7 H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine-6-yl)phenoxy\}ethane 10b. Yield 58%, mp. $243^{\circ} \mathrm{C}$; IR: (potassium bromide) $1608(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.49$ $(\mathrm{s}, 6 \mathrm{H}), 4.18(\mathrm{~s}, 4 \mathrm{H}), 4.53(\mathrm{~s}, 4 \mathrm{H}), 7.09(\mathrm{t}, 2 \mathrm{H}, J=9 \mathrm{~Hz})$, $7.27(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.53(\mathrm{t}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.94(\mathrm{~d}, 2 \mathrm{H}$, $J=9 \mathrm{~Hz}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}(\%) 518\left(\mathrm{M}^{+}, 13\right), 484$ (11.4), 304 (8.8), 213 (7.4), 76 (75.5). Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 55.58; H, 4.28; N, 21.61. Found: C, 55.60; H, 4.26; N, 21.63.

1,3-Bis\{2-(3-phenyl-7 H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine-6-yl)phenoxy\}propane 10c. Yield 73%, mp. $265^{\circ} \mathrm{C}$; IR: (potassium bromide) $1600(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.27-$ $2.31(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{t}, 4 \mathrm{H}), 4.32(\mathrm{~s}, 4 \mathrm{H}), 7.01(\mathrm{t}, 2 \mathrm{H}, J=9$ $\mathrm{Hz}), 7.20(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.48-7.54(\mathrm{~m}, 8 \mathrm{H}), 7.94-7.97$ (m, 6H); ms: m/z (\%) $656\left(\mathrm{M}^{+}, 2\right), 484$ (27.0), 369 (1.6), 308 (4.3), 261 (12.1), 177 (100), 104 (63.9). Anal. Calcd. for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, $64.01 ; \mathrm{H}, 4.30 ; \mathrm{N}, 17.06$. Found: C, 63.98; H, 4.33; N, 17.07.

1,4-Bis\{2-(3-phenyl-7 H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine-6yl)phenoxylbutane 10d. Yield 83%, mp. $260^{\circ} \mathrm{C}$; IR: (potassium bromide) $1605(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 1.92-$ $1.98(\mathrm{~m}, 4 \mathrm{H}), 4.16-4.23(\mathrm{~m}, 4 \mathrm{H}), 4.22(\mathrm{~s}, 4 \mathrm{H}), 7.03(\mathrm{t}, 2 \mathrm{H}$, $J=9 \mathrm{~Hz}), 7.16(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.48-7.64(\mathrm{~m}, 8 \mathrm{H})$, 7.93-7.95 (m, 6H); ms: m/z (\%) $670\left(\mathrm{M}^{+}, 19\right), 646$ (100), 309 (3.0), 177 (100), 118 (51.0), 76 (52.0). Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 64.46; H, 4.51; N, 16.70. Found: C, 64.45; H, 4.53; N, 16.72.

1,3-Bis\{4-(3-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine-6-yl)phenoxylpropane 11a. Yield 70%, mp. $248^{\circ} \mathrm{C}$; IR: (potassium bromide) $1602(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 2.22$ (brs, 2H), 4.23(brs, 4H), 4.38(s, 4H), 7.11(d, 4H, J = 9 Hz), $7.53-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.94-8.01(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 22.58$, 28.36, 64.63, 115.04, 125.51, 126.00, 127.83, 128.68, $129.44,144.00,150.10151 .41,155.46,161.48 ; \mathrm{ms}: \mathrm{m} / \mathrm{z}(\%)$ $656\left(\mathrm{M}^{+}, 5\right), 630$ (15.4), 369 (6.8), 177 (5.4), 104 (12.1). Anal. Calcd. for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 64.01; H, 4.30; N , 17.06. Found: C, $64.03 ; \mathrm{H}, 4.31 ; \mathrm{N}, 17.05$.

1,4-Bis\{4-(3-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine-6yl)phenoxylbutane 11b. Yield 92%, mp. $240^{\circ} \mathrm{C}$; IR: (potassium bromide) $1608(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 1.92$ (brs, 4 H$), 4.16$ (brs, 4H), $4.41(\mathrm{~s}, 4 \mathrm{H}), 7.12(\mathrm{~d}, 4 \mathrm{H}, J=9 \mathrm{~Hz}), 7.54-7.59(\mathrm{~m}, 6 \mathrm{H})$, 7.96-8.03 (m, 8H); ms: m/z (\%) $670\left(\mathrm{M}^{+}, 23\right), 464$ (30.6), 357 (100), 276 (19.4), 139 (44.4), 80 (97.2). Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 64.46; H, 4.51; N, 16.70. Found: C, 64.44; H, 4.52; N, 16.71.

1,4-bis\{4-(3-methyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine6 -yl)phenoxylbutane 11c. Yield 95%, mp. $280^{\circ} \mathrm{C}$; IR: (potassium bromide) $1609(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 1.92$ (brs, 4 H), 2.56 (s, 6H), 4.17 (brs, 4H), 4.41(s, 4H), 7.12 (d, 4H, $J=9$ $\mathrm{Hz}), 8.02(\mathrm{~d}, 4 \mathrm{H}, J=9 \mathrm{~Hz})$; ms: $m / z(\%) 546\left(\mathrm{M}^{+}, 20\right), 276$ (19.4), 121 (44.4), 55 (85.2). Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 57.12; H, 4.79; N, 20.50. Found: C, 57.13; H, 4.81; N, 20.48.

1,2-Bis\{2-(3-phenyl-[1,2,4]triazino[3,4-b][1,3,4]thiadiazin-4 (8H)-on-7-yl)phenoxylethane 14a. Yield $63 \%, \mathrm{mp} .220^{\circ} \mathrm{C}$; IR: (potassium bromide) $1650(\mathrm{C}=\mathrm{O}), 1602(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 4.17$ ($\mathrm{s}, 4 \mathrm{H}$), 4.57 (s, 4H), 7.10 (t, 2H, $J=9$ $\mathrm{Hz}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.46-7.61(\mathrm{~m}, 8 \mathrm{H}), 8.03-8.05$ (m, 6H); ms: m/z (\%) $698\left(\mathrm{M}^{+}, 5\right), 582$ (3.5), 304 (66.3), 201 (30.2), 157 (12.8), 103 (100). Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 61.88; H, 3.75; $\mathrm{N}, 16.04$. Found: C, 61.89; H, 3.74; N, 16.06.

1,3-Bis\{2-(3-phenyl-[1,2,4]triazino[3,4-b][1,3,4]thiadiazin-4 (8H)-on-7-yl)phenoxyl-propane $14 b$. Yield 68%, mp. $200^{\circ} \mathrm{C}$; IR: (potassium bromide) $1642(\mathrm{C}=\mathrm{O}), 1602(\mathrm{C}=\mathrm{N})$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR: $\delta 2.22$ (brs, 2H), 4.24 (brs, 4 H), 4.40 (s, $4 \mathrm{H}), 7.12-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.57(\mathrm{~m}, 8 \mathrm{H}), 7.96-8.02(\mathrm{~m}$, $6 \mathrm{H}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}$ (\%) $712\left(\mathrm{M}^{+}, 13\right), 393$ (15.8), 276 (16.8), 205 (65.4), 127 (12.1), 103 (100), 76 (75.5). Anal. Calcd. for $\mathrm{C}_{37} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, $62.35 ; \mathrm{H}, 3.96 ; \mathrm{N}, 15.72$. Found: C, 62.33; H, 3.97; N, 15.75\%.

1,4-Bis\{2-(3-phenyl-[1,2,4]triazino[3,4-b][1,3,4]thiadiazin-4 (8H)-on-7-yl)phenoxy butane 14c. Yield $70 \%, \mathrm{mp} .165^{\circ} \mathrm{C}$; IR: (potassium bromide) $1645(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}, 1602(\mathrm{C}=\mathrm{N})$; ${ }^{1} \mathrm{H}$ NMR: $\delta 1.95$ (brs, 4H), 4.20 (brs, 4 H), 4.24 (s, 4H), $7.07(\mathrm{t}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.23(\mathrm{~d}, 2 \mathrm{H}, J=9 \mathrm{~Hz}), 7.50-7.56$ (m, 8H), 8.07-8.10 (m, 6H); ms: m/z (\%) $726\left(\mathrm{M}^{+}, 5\right), 403$ (15.4), 307 (6.8), 220 (5.4), 192 (12.1), 161 (25.8), 121 (19.3), 104 (100), 77 (75.5). Anal. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 62.79; H, 4.16; N, 15.42. Found: C, 62.78; H, 4.17; N, 15.43\%.

1,4-Bis\{4-(3-phenyl-[1,2,4]triazino[3,4-b][1,3,4]thiadiazin-4 (8H)-on-7-yl)phenoxylbutane 15 . Yield 72%, mp. $207^{\circ} \mathrm{C}$; IR: (potassium bromide) $1642(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 1.93$ (brs, 4H), 4.18 (brs, 4H), 4.35 (s, 4H), 7.13 (d, 4H, $J=9 \mathrm{~Hz}$), 7.47-7.52 (m, 6H), 8.03-8.06 (d, 4H, $J=9 \mathrm{~Hz}), 8.08-8.11(\mathrm{~m}, 4 \mathrm{H}) ; \mathrm{ms}: m / z(\%) 726\left(\mathrm{M}^{+}, 9\right), 393$ (15.4), 276 (6.8), 205(35.4), 127(62.1), 103(100), 76(75.5). Anal. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 62.79; H, 4.16; N, 15.42. Found: C, $62.81 ; \mathrm{H}, 4.15$; N, 15.44%.

Reduction of bis(triazolothiadiazine) derivatives $11 \mathrm{~b}, \mathrm{c}$. General procedure. To a stirred hot $\left(40-50^{\circ} \mathrm{C}\right)$ solution of each of 11a and 11c (0.7 mmol) in methanol (10 mL) was added sodium borohydride (0.4 g) over a period of 15 min . The reaction mixture was heated under reflux for 1 h . The solvent was then removed in vacuo and the remaining solid was collected, washed with water and crystallized from ethanol to give colorless crystals of 12a and 12b

1,4-Bis\{4-(3-phenyl-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b] [1,3,4]thiadiazine-6-yl)-phenoxy]butane 12a. Yield 42\%, $\mathrm{mp} .174^{\circ} \mathrm{C}$; IR: (potassium bromide) $3357(\mathrm{NH}), 1608(\mathrm{C}=\mathrm{N})$ $\mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR: $\delta 1.8$ (brs, 4 H), $3.42\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz},{ }^{2}\right.$ $\left.J=12.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}-7\right), 3.51\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J=8.7 \mathrm{~Hz},{ }^{2} J=12.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-7\right)$, 4.0 (brs, 4 H), $4.51-4.58(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}), 6.92(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{NH})$, 7.14-7.99 (m, $18 \mathrm{H}, \mathrm{ArHs}$) ppm; ms: m/z (\%) $674\left(\mathrm{M}^{+}, 20\right), 468$ (55.6), 357 (100), 276 (18.4), 139 (48.4), 80 (87.2). Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 64.07 ; H, 5.08; N, 16.60. Found: C, 64.11; H, 5.05; N, 16.63\%.

1,4-Bis\{4-(3-methyl-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b] [1,3,4]thiadiazine-6-yl)phenoxy)butane 12b. Yield 46\%, mp. $202^{\circ} \mathrm{C}$; IR: (potassium bromide) 3429 (NH), 1608 $(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 1.8$ (brs, 4 H$), 2.26\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.35\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J=2.7 \mathrm{~Hz},{ }^{2} J=12.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}-7\right.$), 3.44 (dd, 2 H , ${ }^{3} J=8.7 \mathrm{~Hz},{ }^{2} J=12.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-7$), 4.04 (brs, 4 H), $4.45-4.50$ (m, 2H, 6-H), $6.73(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}, \mathrm{NH}), 6.94,7.35(2 \mathrm{~d}, 8 \mathrm{H}$, ArHs) ppm; ms: m/z (\%) $550\left(\mathrm{M}^{+}, 10\right), 280(22.4), 121$ (49.4), 55 (87.2). Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 56.71 ; $\mathrm{H}, 5.49$; N, 20.35. Found: C, $56.74 ; \mathrm{H}, 5.51$; N, 20.30%.

REFERENCES AND NOTES

[1] Thurston, D. E.; Bose, D. S.; Thompson, A. S.; Howard, P. W.; Leoni, A.; Croker, S. J.; Jenkins, T. C.; Neidle, S.; Hartley, J. A.; Hurley, L. H. J Org Chem 1996, 61, 8141.
[2] Shaker, R. M. Phosphorus, Sulfur, Silicon and the Related Elements 1999, 149, 7.
[3] Kamal, A.; Laxman, N.; Ramesh, G.; Neelima, K.; Anand K. K. Chem Commun 2001, 437.
[4] Raasch, A.; Scharfenstein, O.; Trankle, C.; Holzgrabe, U.; Mohr, K. J Med Chem 2002, 45, 3809.
[5] Jain, M.; Khanna, P.; Saxena, A.; Bhagat, S.; Olsen, C. E.; Jain, S. C. Synth Commun 2006, 36, 1863.
[6] Jain, M.; Sakhuja, R.; Khanna, P.; Bhagat, S.; Jain, S. C. Arkivoc 2008, 15, 54.
[7] Yang, G. Y.; Oh, K.-A.; Park, N.-J.; Jung, Y.-S. Bioorg Med Chem 2007, 15, 7704.
[8] Giacomo, B. D.; Bedini, A.; Spadoni, G.; Tarzia, G.; Fraschini, F.; Pannaccib, M.; Lucinib, V. Bioorg Med Chem 2007, 15, 4643.
[9] Holla, B. S.; Gonsalves, R.; Shenoy, S. Eur J Med Chem 2000, 35, 267.
[10] Holla, B. S.; Gonsalves, R.; Rao, B. S.; Shenoy, S.; Gopalakrishna, H. N. Il Farmaco 2001, 56, 899.
[11] Holla, B. S.; Poojary, K. N.; Rao, B. S.; Shivananda, M. K. Eur J Med Chem 2002, 3, 511.
[12] Turan-Zitouni, G.; Kaplancıklı, Z. A.; Yıldız, M. T.; Chevallet, P.; Kaya, D. Eur J Med Chem 2005, 40, 607.
[13] Walczak, K.; Gondela, A.; Suwinski, J. Eur J Med Chem 2004, 39, 849.
[14] Mavrova, A. T.; Wesselinova, D.; Tsenov, Y. A.; Denkova, P. Eur J Med Chem 2009, 44, 63.
[15] Al-Soud, Y. A.; Al-Masoudi, N. A.; Ferwanah, A. R. S. Bioorg Med Chem 2003, 11, 1701.
[16] Almasirad, A.; Tabatabai, S. A.; Faizi, M.; Kebriaeezadeh, A.; Mehrabi, N.; Dalvandi, A.; Shafiee, A. Bioorg Med Chem Lett 2004, 14, 6057.
[17] Amir, M.; Shikha, K. Eur J Med Chem 2004, 39, 535.
[18] Karegoudar, P.; Prasad, D. J.; Ashok, M.; Mahalinga, M.; Poojary, B.; Holla, B. S. Eur J Med Chem 2008, 43, 808.
[19] Amir, M.; Kumar, H.; Javed, S. A. Eur J Med Chem 2008, 43, 2056.
[20] Aytac, S. P.; Tozkoparan, B.; Kaynak, F. B.; Aktay, G.; Goktas, O.; Unuvar, S. Eur J Med Chem 2009, 44, 4528.
[21] Bhat, K. S.; Poojary, B.; Prasad, D. J.; Naik, P.; Holla, B. S. Eur J Med Chem 2009, 44, 5066.
[22] Kaplancikli, Z. A.; Turan-Zitouni, G.; Ozdemir, A.; Revial, G. Eur J Med Chem 2008, 43, 155.
[23] Khanum, S. A.; Shashikanth, S.; Umesha, S.; Kavitha, R. Eur J Med Chem 2005, 40, 1156.
[24] Demirbas, N.; Demirbas, A.; Karaoglu, S. A.; Celik, E. Arkivoc 2005, 1, 75.
[25] Holla, S. B.; Sooryanarayana, B. R.; Sarojini, B. K.; Akberali, P. M. Eur J Med Chem 2006, 41, 657.
[26] El-Shehrya, M. F.; Abu-Hashem, A. A.; El-Telbani, E. M. Eur J Med Chem 2010, 45, 1906.
[27] Phucho, T.; Nongpiur, A.; Tumtin, S.; Nongrum, R.; Myrboh, B.; Nongkhlaw, R. L. Arkivoc 2008, 15, 79.
[28] Wamhoff, H.; Tzanova, M. Arkivoc 2003, 2, 98.
[29] Mansour, A. K.; Eid, M. M.; Khalil, S. A. M. Nucleos Nucleot Nucleic Acids 2003, 22, 21.
[30] Sztanke, K.; Fidecka, S.; Kedzierska, E; Karczmarzyk, Z.; Pihlaja, K.; Matosiuk, D. Eur J Med Chem 2005, 40, 127.
[31] Nyffenegger, C.; Fournet, G.; Joseph, B. Tetrahedron Lett 2007, 48, 5069.
[32] Karpenko, I.; Deev, S.; Kiselev, O.; Charushin, V.; Rusinov, V.; Ulomsky, E.; Deeva, E.; Yanvarev, D.; Ivanov, A.; Smirnova, O.; Kochetkov, S.; Chupakhin, O.; Kukhanova, M. Antimicrob Agents Chemother 2010, 54, 2017.
[33] Ban, K.; Duffy, S.; Khakham, Y.; Avery, V. M.; Hughes, A.; Montagnat, O.; Katneni, K.; Ryan, E.; Baell, J. Bioorg Med Chem Lett 2010, 20, 6024.
[34] El-Barbary, A. A.; Sakran, M. A.; El Madani, A. M.; Nielsen, C. J Heterocycl Chem 2005, 42, 935.
[35] Bazavova, I. M.; Britsun, V. N.; Esipenko A. N.; Lozinskii M. O. Chem Heterocycl Comp 2003, 39, 809.
[36] Kodomari, M.; Aoyama T.; Suzuki, Y. Tetrahedron Lett 2002, 43, 1717.
[37] Rudolph, J. Tetrahedron 2002, 56, 3161.
[38] Bell, S. C.; Wei, P. H. J Med Chem 1976, 19, 524.
[39] Kunckell, F. Chem Ber 1901, 34, 637.
[40] Lohrisch, H.-J.; Kopanski, L.; Herrmann, R.; Schmidt, H.; Steglich, W. Liebigs Ann Chem 1986, 177.
[41] Dubois, J.-E.; Axiotis, G.; Bertounesque, E. Tetrahedron Lett 1985, 26, 4371.
[42] Sant, K. V.; South, M. S. Tetrahedron Lett 1987, 28, 6019.
[43] Favorskii, A. E. J Prakt Chem 1913, 88, 658.
[44] Sacks, A. A.; Aston, J. G. J Am Chem Soc 1951, 73, 3902.
[45] Diwu, Z.; Beachdel, C.; Klaubert, D. H. Tetrahedron Lett 1998, 39, 4987.
[46] King, L. C.; Ostrum, G. K. J Org Chem 1964, 29, 3459.
[47] Aoyama, T.; Takido T.; Kodomari, M. Tetrahedron Lett 2004, 45, 1873.
[48] Pasaribu, S. J.; Williams, L. R. Aust J Chem 1973, 26, 1327.
[49] Kajigaeshi, S.; Kakinami, T.; Okamoto, T.; Fujisaki, S. Bull Chem Soc Jpn 1987, 60, 1159.
[50] Habermann, J.; Ley, S. V.; Smits, R. J Chem Soc Perkin Trans 1 1999, 2421.
[51] De Kimpe, N.; Verhé, R. In The Chemistry of α-Haloketones, α-Haloaldehydes and α-Haloimines; Patai, S.; Rappoport, Z., Eds.; Wiley: Chichester, 1988; pp 1-119.
[52] (a) Elwahy, A. H. M. J Chem Res (S), 1995, 88; (b) Elwahy, A. H. M. J Chem Res (M), 1995, 653.
[53] (a) Elwahy, A. H. M. J Chem Res (S), 1999, 602; (b) J Chem Res (M), 1999, 2582.
[54] (a) Elwahy, A. H. M.; Ahmed, M. H.; Elsadek, M. J Chem Res (S), 2001, 175; (b) J Chem Res (M), 2001, 525.
[55] Elwahy, A. H. M.; Abbas, A. A. Synth Commun 2000, 30, 2903.
[56] Elwahy, A. H. M.; Abbas, A. A.; Kassab, R. M. Synthesis 2002, 260.
[57] Elwahy, A. H. M.; Abbas, A. A.; Ahmed, A. M. J Heterocycl Chem 2005, 42, 93.
[58] Elwahy, A. H. M.; Masaret, Gh. S. J Heterocycl Chem 2007, 44, 1475.
[59] Muathen, H. A.; Aloweiny, N. A. M.; Elwahy, A. H. M. J Heterocycl Chem 2009, 46, 656.
[60] Tani, H.; Murayama, K.; Toda, F. Bull Chem Soc Jpn 1964, 37, 919.

